\qquad

Chapter 6 and Exam Review

1. Calculate the following:

$$
\frac{d}{d x} \int_{1}^{\sqrt{x}}\left(\frac{d}{d t} \int_{1}^{t^{2}} \frac{\sin s}{s} d s\right) d t
$$

2. Calculate:

$$
\int(x+1)(x+3)^{2016} d x .
$$

3. Evaluate the definite integral:

$$
\int_{1}^{e} \frac{(\ln x)^{2}}{x} d x
$$

4. Find the flow rate through a tube of radius 4 cm , assuming that the velocity of fluid at a distance r centimeters from the center is $v(r)=\left(16-r^{2}\right) \mathrm{cm} / \mathrm{s}$.
5. a. Let M be the average value of $f(x)=x^{4}$ on [0,3]. Find a value c in $[0,3]$ such that $f(c)=M$.
b. Let $f(x)=\sqrt{x}$. Find a value c in $[4,9]$ such that $f(c)$ is equal to the average of f on $[4,9]$.
6. Find the volume of the solid whose base is the unit circle $x^{2}+y^{2}=1$, and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.
7. Find the volume of the solid obtained by rotating the region enclosed by the graphs

$$
y=x^{2}, \quad y=12-x, \quad x=0
$$

about the line $y=-2$.
8. Use the shell method to compute the volume obtained by rotating the region enclosed by the graphs

$$
y=1-|x-1|, \quad y=0
$$

about the y-axis.
9. Calculate:
a.

$$
\int_{0}^{1} x e^{-x^{2} / 2} d x
$$

b.

$$
\int e^{x} \cos \left(e^{x}\right) d x
$$

10. Figure 2 shows a solid whose horizontal cross section at height y is a circle of radius $(1+y)^{-2}$ for $0 \leq y \leq H$. Find the volume of the solid as a function of H. What is the volume when $H=1$?

FIGURE 2
11. A tank of mass 20 kg containing 100 kg of water (density $1,000 \mathrm{~kg} / \mathrm{m}^{3}$) is raised vertically at a constant speed of $100 \mathrm{~m} / \mathrm{min}$ for 1 min , during which time water is leaking at a rate of $40 \mathrm{~kg} / \mathrm{min}$. Calculate the total work performed in raising the container.
12. Water is pumped into a spherical tank of radius 2 m from a source located 1 m below a hole at the bottom (see Fig. 5). The density of water is $1,000 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the work $F(h)$ required to fill the tank to level h in meters in the sphere.

Water source
FIGURE 5

